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CENTRAL FORCE PROBLEMS

Introduction. This is where it all began. Newton’s Mathematical Principles of
Natural Philosophy () was written and published at the insistance of young
Enmund Halley (–) so that the world at large might become acquainted
with the general theory of motion that had permitted Newton to assure Halley
(on occasion of the comet of ) that comets trace elliptical orbits (and
that in  permitted Halley to identify that comet—now known as “Halley’s
comet”—with the comets of  and , and to predict its return in ). It
was with a remarkably detailed but radically innovative account of the quantum
theory of hydrogen that Schrödinger signaled his invention of wave mechanics,
a comprehensive quantum theory of motion-in-general. In both instances,
description of the general theory was preceded by demonstration of the success
of its application to the problem of two bodies in central interaction.1

We will be concerned mainly with various aspects of the dynamical problem
posed when two bodies interact via central conservative forces. But I would like
to preface our work with some remarks intended to place that problem in its
larger context.

We often yield, as classical physicists, to an unexamined predisposition to
suppose that all interactions are necessarily 2-body interactions. To describe a
system of interacting particles we find it natural to write

miẍxxi = FFF i +
∑

j

′
FFF ij

FFF ij = force on ith by jth

1 It is interesting to note that the Principia begins with a series of eight
Definitions, of which the last four speak about “centripetal force.”
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and to write
FFF ij = −FFF ji : “action = reaction” (1.1)

as an expression of Newton’s 3rd Law. But it is entirely possible to contemplate
3-body forces

FFF i,jk = force on jth due to membership in
{
i, j, k

}
and to consider it to be a requirement of an enlarged 3rd Law that2

FFF i,jk + FFF j,ki + FFF k,ij = 000 (1.2)

For the dynamics of a system of interacting particles to admit of Lagrangian
formulation the interparticle forces must be conservative (derivable from a
potential). For a 2-particle system we would introduce U interaction(xxx1, xxx2) and,
to achieve compliance with (1.1), require

(∇∇∇1 +∇∇∇2)U interaction(xxx1, xxx2) = 000 (2.1)

For a 3-particle system we introduce U interaction(xxx1, xxx2, xxx3) and require

(∇∇∇1 +∇∇∇2 +∇∇∇3)U interaction(xxx1, xxx2, xxx3) = 000
...

(2.2)

The “multi-particle interaction” idea finds natural accommodation within such
a scheme, but the 3rd Law is seen to impose a severe constraint upon the design
of the interaction potential.

We expect the interparticle force system to be insensitive to gross
translation of the particle population:

U interaction(xxx1 + aaa,xxx2 + aaa, . . . , xxxn + aaa) = U interaction(xxx1, xxx2, . . . , xxxn)

This, pretty evidently, requires that the interaction potential depend upon its
arguments only through their differences

rrrij = xxxi − rrrj

of which there are an antisymmetric array:

rrr12 rrr13 . . . rrr1n

rrr23 . . . rrr2n

...
rrrn−1,n




: total of N = 1
2n(n− 1) such rrr’s

2 Though illustrated here as it pertains to 3-body forces, the idea extends
straightforwardly to n -body forces, but the “action/reaction” language seems
in that context to lose some of its naturalness. For discussion, see classical
mechanics (/), page 58.
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Rotational insensitivity

V interaction(Rrrr12, Rrrr13, . . .) = V interaction( rrr12, rrr13, . . .)

pretty evidently requires that the translationally invariant interaction potential
depend upon its arguments rrrij only through their dot products

rij,kl = rrrij ···rrrkl = xxxi ···xxxk − xxxi ···xxxl − xxxj ···xxxk + xxxj ···xxxl

of which there is a symmetric array with a total of

1
2N(N + 1) = 1

2 (n2 − n + 2)(n− 1)n

elements.

n

1
2
3
4
5
6

1
2 (n2 − n + 2)(n− 1)n

0
1
6

21
55

120

Table 1: Number of arguments that can appear in a translationally
and rotationally invariant potential that describes n-body interaction.

In the case n = 2 one has U(r12,12) = U([rrr1 − rrr2]··· [rrr1 − rrr2]) giving

∇∇∇1U = +2U ′(r12,12) · [rrr1 − rrr2]

∇∇∇2U = −2U ′(r12,12) · [rrr1 − rrr2]

whence
∇∇∇1U +∇∇∇2U = 000

We conclude that conservative interaction forces, if translationally/rotationally
invariant, are automatically central, automatically conform to Newton’s 3rd

Law . In the case n = 3 one has U(r12,12, r12,13, r12,23, r13,13, r13,23, r23,23) and—
consigning the computational labor to Mathematica—finds that compliance
with the (extended formulation of) the 3rd Law is again automatic:

∇∇∇1U +∇∇∇2U +∇∇∇3U = 000

I am satisfied, even in the absence of explicit proof, that a similar result holds
in every order.

Celestial circumstance presented Newton with several instances (sun/comet,
sun/planet, earth/moon) of what he reasonably construed to be instances of
the 2-body problem, though it was obvious that they became so by dismissing
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Figure 1: At left : a classical scattering process into which two
particles enter, and from which (after some action-at-a-distance has
gone on) two particles depart. Bound interaction can be thought of
as an endless sequence of scattering processes. At right : mediated
interaction, as contemplated in relativistic theories. . .which include
the theory of elementary particles. Primitive scattering events are
local and have not four legs but three : one particle enters and two
emerge, else two enter and one emerges. In the figure the time axis
runs ↑↑↑.

spectator bodies as “irrelevant” (at least in leading approximation3). That only
2-body interactions contribute to the dynamics of celestial many-body systems
is a proposition enshrined in Newton’s universal law of gravitational interaction,
which became the model for many-body interactions of all types. The implicit
claim here, in the language we have adopted, is that the interaction potentials
encountered in Nature possess the specialized structure

U interaction(xxx1, xxx2, . . . , xxxn) =
∑
pairs

Uij(rij)

where rij ≡
√

rij,ij =
√

rrrij ···rrrij and from which arguments of the form rij,kl

(three or more indices distinct) are absent. To create a many-body celestial
mechanics Newton would, in effect, have us set

Uij(rij) = −Gmimj
1

rij

whence
FFF ij = −∇∇∇iUij = −Gmimj

1
r 2
ij

r̂rrij

3 Halley, in constructing his predicted date () of cometary return, took
into account a close encounter with Saturn.
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where, it will be recalled, rrrij ≡ xxxi − xxxj = −rrrji is directed xxxi ←− xxxj and
FFF ij refers to the force impressed upon mi by mj .

Though classical mechanics provides a well developed “theory of collisions,”
the central force problem—our present concern—was conceived by Newton
to involve instantaneous action at a distance, a concept to which many of
his contemporaries (especially in Europe) took philosophical exception,4 and
concerning his use of which Newton himself appears to have been defensively
apologetic: he insisted that he “did not philosophize,” was content simply
to calculate. . .when the pertinence of his calculations was beyond dispute.
But in the 20th Century action-at-a-distance ran afoul—conceptually, if not
under ordinary circumstances practically—of the Principle of Relativity, with
its enforced abandonment of the concept of distant simultaneity. Physicists
found themselves forced to adopt the view that all interaction is local, and
all remote action mediated , whether by fields or by real/virtual particles. See
Figure 1 and its caption for remarks concerning this major conceptual shift.

1. Reduction of the 2-body problem to the equivalent 1-body problem. Suppose
it to be the case that particles m1 and m2 are subject to no forces except for
the conservative central forces which they exert upon each other. Proceeding
in reference to a Cartesian inertial frame,5 we write

m1ẍxx1 = −∇∇∇1U
(√

(xxx1 − xxx2)···(xxx1 − xxx2)
)

m2ẍxx2 = −∇∇∇2U
(√

(xxx1 − xxx2)···(xxx1 − xxx2)
)

}
(3)

A change of variables renders this system of equations much more amenable to
solution. Writing

m1xxx1 + m2xxx2 = (m1 + m2)XXX

xxx1 − xxx2 = RRR
(4.1)

we have
xxx1 = XXX + m2

m1+m2
RRR

xxx2 = XXX − m1
m1+m2

RRR
whence

rrr1 = + m2
m1+m2

RRR

rrr2 = − m1
m1+m2

RRR
(4.2)

and the equations (3) decouple:

MẌXX = 000 (5.1)

R̈RR = −
(

1
m1

+ 1
m2

)
∇∇∇U(R) (5.2)

Equation (5.1) says simply that in the absence of externally impressed forces

4 They held to the so-called “Principle of Contiguity,” according to which
objects interact only by touching.

5 It would be impossible to talk about the dynamics of two bodies in a
world that contains only the two bodies. The subtle presence of a universe
full of spectator bodies appears to be necessary to lend physical meaning to
the inertial frame concept . . . as was emphasized first by E. Mach, and later by
A. S. Eddington.
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m1

rrr1 xxx1

rrr2

m2 XXX

xxx2

Figure 2: Coordinates xxxi position the particles mi with respect to
an inertial frame, XXX locates the center of mass of the 2-body system,
vectors rrri describe particle position relative to the center of mass.

µ

RRR

XXX

Figure 3: Representation of the equivalent one-body system.

the motion of the center of mass is unaccelerated. Equation (5.2) says that the
vector RRR ≡ xxx1 − xxx2 = rrr1 − rrr2 moves as though it referred to the motion of a
particle of “reduced mass” µ

1
µ = 1

m1
+ 1

m2
⇐⇒ µ = m1m2

m1+m2
(6)
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in an impressed central force field

FFF (RRR) = −∇∇∇U(R)

= −U ′(R)R̂RR (7)
⇓
= −Gm1m2

R2
R̂RR in the gravitational case

Figure 3 illustrates the sense in which the one-body problem posed by (5.2)
is “equivalent” to the two-body problem from which it sprang.

DIGRESSION:6 Suppose vectors {xxx1, xxx2, . . . , xxxN} mark (relative to an inertial
frame) the instantaneous positions of a population {m1, m2, . . . , mN} of N > 2
particles. We have good reason—rooted in the (generalized) 3rd Law7—to
expect the center of mass

XXX ≡ 1
M

∑
i

mixxxi : M ≡
∑

i

mi

to retain its utility, and know that in many contexts the relative coordinates
rrri ≡ xxxi −XXX do too. But we cannot adopt {XXX,rrr1, rrr2, . . . , rrrN} as independent
variables, for the system has only 3N (not 3N +3) degrees of freedom, and the
rrri are subject at all times to the constraint

∑
i mirrri = 000. To drop one (which

one?) of the rrri would lead to a formalism less symmetric that the physics it
would describe. It becomes therefore natural to ask: Can the procedure (4) that
served so well in the case N = 2 be adapted to cases N > 2? The answer is:
Yes, but not so advantageously as one might have anticipated or desired.

Reading from Figure 4b, we have

RRR2 = xxx1− xxx2

RRR3 = 1
m1+m2

(m1xxx1+ m2xxx2)− xxx3

RRR4 = 1
m1+m2+m3

(m1xxx1+ m2xxx2 + m3xxx3)− xxx4

XXX = 1
m1+m2+m3+m4

(m1xxx1+ m2xxx2+ m3xxx3 + m4xxx4)

from which it follows algebraically that

xxx4 = XXX − m1+m2+m3
m1+m2+m3+m4

RRR4 = XXX + rrr4

xxx3 = XXX + m4
m1+m2+m3+m4

RRR4 − m1+m2
m1+m2+m3

RRR3 = XXX + rrr3

xxx2 = XXX + m4
m1+m2+m3+m4

RRR4 + m3
m1+m2+m3

RRR3 − m1
m1+m2

RRR2 = XXX + rrr2

xxx1 = XXX + m4
m1+m2+m3+m4

RRR4 + m3
m1+m2+m3

RRR3 + m2
m1+m2

RRR2 = XXX + rrr1




(8)

6 This material has been adapted from §5 in “Constraint problem posed
by the center of mass concept in non-relativistic classical/quantum mechanics”
().

7 See again §1 in Chapter 2.
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Figure 4a: Shown above : the vectors {xxx1, xxx2, xxx3, xxx4} that serve
to describe the instantaneous positions of {m1, m2, m3, m4} relative
to an inertial frame. Shown below : the vector XXX that marks the
position of the center of mass • and the vectors {rrr1, rrr2, rrr3, rrr4} that
serve—redundantly—to describe position relative to the center of
mass.
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m3

RRR3

m2

RRR4

m4 XXX RRR2

m1

Figure 4b: “Calder construction” of a system of Jacobi vectors.
Here

RRR2 proceeds m2 −→ m1

RRR3 proceeds m3 −→ center of mass • of {m1, m2}
RRR4 proceeds m4 −→ center of mass • of {m1, m2, m3}
...

XXX marks the center of mass of the entire population

Alternative Jacobi systems would result if the particle names were
permuted.

What he have in (8) is the description of a change of variables8{
xxx1, xxx2, . . . , xxxN

}
−→

{
XXX,RRR2, . . . ,RRRN

}
that serves to render compliance with

∑
mirrri = 000 automatic. Introduction of

the RRR -variables has permitted us to avoid the “discriminatory asymmetry” of
rrr1 = − 1

m1

{
m2rrr2 + · · · + mNrrrN

}
, but at cost of introducing an asymmetry of

a new sort: a population of N masses can be “mobilized” in N ! distinct ways;
to select one is to reject the others, and to introduce hierarchical order where
(typically) none is present in the physics.

8 Through presented in the case N = 4, it is clear how one would extend (8)
to higher order. To pull back to order N = 3 one has only to strike the first
equation and then to set m4 = 0 in the equations that remain.
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So far as concerns the dynamical aspects of that physics, we find (with
major assistance by Mathematica) that

1
2

{
m1ẋxx1···ẋxx1+ m2ẋxx2···ẋxx2

}
= 1

2

(
m1+ m2

)
ẊXX···ẊXX + 1

2µ2ṘRR2···ṘRR2

1
2

{
m1ẋxx1···ẋxx1+ m2ẋxx2···ẋxx2+ m3ẋxx3···ẋxx3

}
= 1

2

(
m1+ m2+ m3

)
ẊXX···ẊXX + 1

2µ2ṘRR2···ṘRR2 + 1
2µ3ṘRR3···ṘRR3

1
2

{
m1ẋxx1···ẋxx1+ m2ẋxx2···ẋxx2+ m3ẋxx3···ẋxx3+ m4ẋxx4···ẋxx4

}
= 1

2

(
m1+ m2+ m3+ m4

)
ẊXX···ẊXX + 1

2µ2ṘRR2···ṘRR2 + 1
2µ3ṘRR3···ṘRR3 + 1

2µ4ṘRR4···ṘRR4
...

where
µ2 ≡

[
1

m1
+ 1

m2

]–1 = m1m2
m1+m2

µ3 ≡
[

1
µ2

+ 1
m3

]–1 = (m1+m2)m3
m1+m2+m3

(9)

µ4 ≡
[

1
µ3

+ 1
m4

]–1 = (m1+m2+m3)m4
m1+m2+m3+m4...

serve to generalize the notion of “reduced mass.” The fact that no cross terms
appear when kinetic energy is described in terms of

{
XXX,RRR2, . . . ,RRRN

}
variables

is—though familiar in the case N = 2—somewhat surprising in the general
case. I look to the underlying mechanism, as illustrated in the case N = 3: we
have


 rrr1

rrr2

rrr3


 =M

(
RRR2

RRR3

)

M ≡




+ m2
m1+m2

+ m3
m1+m2+m3

− m1
m1+m2

+ m3
m1+m2+m3

0 − m1+m2
m1+m2+m3


 : Note that M is 3× 2

The claim—verified by Mathematica—is that

M
T


 m1 0 0

0 m2 0
0 0 m3


 M =

(
µ2 0
0 µ3

)

But while the RRR -variables are well-adapted to the description of kinetic energy,
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we see from9

rrr1 − rrr2 = RRR2

rrr1 − rrr3 = m2
m1+m2

RRR2 + RRR3

rrr1 − rrr4 = m2
m1+m2

RRR2 + m3
m1+m2+m3

RRR3 + RRR4

rrr2 − rrr3 = − m1
m1+m2

RRR2 + RRR3

rrr2 − rrr4 = − m1
m1+m2

RRR2 + m3
m1+m2+m3

RRR3 + RRR4

rrr3 − rrr4 = − m1+m2
m1+m2+m3

RRR3 + RRR4

that RRR -variables are (except in the case N = 2) not particularly well-adapted
to the description of (the distances which separate the masses, whence to the
description of) central 2-body interactive forces. In the case of the graviational
3-body problem we now find ourselves led to write

U = −G
{

m1m2

[
R2

2

]− 1
2 + m1m3

[(
m2

m1+m2

)2
R2

2 + m2
m1+m2

RRR2···RRR3 + R2
3

]− 1
2

+ m2m3

[(
m1

m1+m2

)2
R2

2 − m1
m1+m2

RRR2···RRR3 + R2
3

]− 1
2
}

↓
= −Gm1m2/

√
RRR2···RRR2 when m3 is extinguished

which provides one indication of why it is that the 2-body problem is so much
easier than the 3-body problem, but at the same time suggests that the variables
RRR2 and RRR3 may be of real use in this physical application. As, apparently,
they turn out to be: consulting A. E. Roy’s Orbital Motion (), I discover
(see his §5.11.3) that rrr ≡ −RRR2 and ρρρ ≡ −RRR3 were introduced by Jacobi and
Lagrange, and are known to celestial mechanics as “Jacobian coordinates.” For
an interesting recent application, and modern references, see R. G. Littlejohn
& M. Reinseh, “Gauge fields in the separation of rotations and internal motions
in the n-body problem,” RMP 69, 213 (1997).

It is interesting to note that the pretty idea from which this discussion
has proceeded (Figure 4b) was elevated to the status of (literally) fine art
by Alexander Calder (–), the American sculptor celebrated for his
invention of the “mobile.”

9 The following equations can be computed algebraically from (19). But
they can also—and more quickly—be read off directly from Figure 4b : to
compute rrri − rrrj one starts at ©j and walks along the figure to ©i , taking signs
to reflect whether one proceeds prograde or retrograde along a given leg, and
(when one enters/exits at the “fulcrum” ◦ of a leg) taking a fractional factor
which conforms to the “teeter-totter principle”

factional factor =
mass to the rear of that leg

total mass associated with that leg

A little practice shows better than any explanation how the procedure works,
and how wonderfully efficient it is.
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2. Mechanics of the reduced system: motion in a central force field. We study
the system

L(ṙrr, rrr) = 1
2µṙrr··· ṙrr − U(r) (10)

where I have written rrr for the vector that came to us (Figure 3) as RRR ≡ xxx1−xxx2.
Equivalently

H(ppp, rrr) = 1
2µ ppp···ppp + U(r) (11)

where
ppp ≡ ∂L/∂ ṙrr = µṙrr

The Lagrange equations read µr̈rr +∇∇∇U = 0 or (compare (5.2))

µr̈rr = − 1
r U ′(r) rrr (12)

which in the Hamiltonian formalism are rendered

ṙrr = 1
µ ppp

ṗpp = − 1
r U ′(r) rrr

}
(13)

From the time-independence of the Lagrangian it follows (by Noether’s theorem)
that energy is conserved

E = 1
2µṙrr··· ṙrr + U(r) is a constant of the motion (14)

while from the manifest rotational invariance of the Lagrangian it follows (on
those same grounds) that angular momentum10 is conserved

LLL = rrr × ppp is a vectorial constant of the motion (15)

We can anticipate that once values have been assigned to E and LLL the general
solution rrr(t;E,LLL) of the equation(s) of motion (12) will contain two adjustable
parameters. In Hamiltonian mechanics (14) reduces to the triviality [H, H ] = 0
while (15) becomes

[H,LLL ] = 000 (16)

Since LLL stands ⊥ to the plane defined by rrr and ppp,11 and since also LLL is
invariant, it follows that the vectors rrr(t) are confined to a plane—the orbital
plane, normal to LLL, that contains the force center as a distinguished point. The
existence of an orbital plane can be understood physically on grounds that—
because the force is central—the particle never experiences a force that would
pull it out of the plane defined by {rrr(0), ṙrr(0)}.

10 What is here called “angular momentum” would, in its original 2-body
context, be called “intrinsic angular momentum” or “spin” to distinguish it
from the “orbital angular momentum” MXXX×ẊXX: the familiar distinction here is
between “angular momentum of the center of mass” and “angular momentum
about the center of mass.”

11 The case rrr ‖ ppp is clearly exceptional: definition of the plane becomes
ambituous, and LLL = 000.
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Reorient the reference frame so as to achieve

LLL =


 0

0
(




and install polar coordinates on the orbital plane:

r1 = r cos θ

r2 = r sin θ

We then have

L = T − U

= 1
2µ(ṙ2 + r2θ̇2)− U(r) (17)

Time-independence implies conservation of

E = 1
2µ(ṙ2 + r2θ̇2) + U(r) (18)

while θ-independence implies conservation of pθ ≡ ∂L/∂θ̇ = µr2θ̇. But from

L3 = r1p2 − r2p1 = µ
[
r cos θ(ṙ sin θ + rθ̇ cos θ)− r sin θ(ṙ cos θ − rθ̇ sin θ)

]
= µr2θ̇ (19)

we see that pθ, L3 and ( are just different names for the same thing. From (18)
we obtain

ṙ =
√

2
µ

[
E − U(r)

]
− r2θ̇2

which by θ̇ = (/µr2 (20)

=
√

2
µ

[
E − U(r)− 2

2µr2

]
(21)becomes

This places us in position once again to describe a “time of flight”

tr0→r =
∫ r

r0

1√
2
µ

[
E − U(r)− 2

2µr2

] dr (22)

which by functional inversion (if it could be performed) would supply r(t).
Moreover

dθ
dr

= θ̇
ṙ

=
(/µr2√

2
µ

[
E − U(r)− 2

2µr2

]
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which provides this “angular advance” formula

θ − θ0 =
∫ r

r0

(/µr2√
2
µ

[
E − U(r)− 2

2µr2

] dr (23)

But again, a (possibly intractable) functional inversion stands between this
and the r(θ;E, () with which we would expect to describe an orbit in polar
coordinates.

At (21) the problem of two particles (masses m1 and m2) moving
interactively in 3-space has been reduced to the problem of one particle (mass µ)
moving on the positive half of the r -line in the presence of the effective potential

U(r) = U(r) + (2

2µr2
(24)

—has been reduced, in short, to the problem posed by the effective Lagrangian

L = 1
2µṙ2 − U(r)

The beauty of the situation is that in 1-dimensional problems it is possible
to gain powerful insight from the simplest of diagramatic arguments. We will
rehearse some of those, as they relate to the Kepler problem and other special
cases, in later sections. In the meantime, see Figure 5.

Bound orbits arise when the values of E and ( are such that r is trapped
between turning points rmin and rmax. In such cases one has

∆θ ≡ angular advance per radial period

= 2
∫ rmax

rmin

(/µr2√
2
µ

[
E − U(r)− 2

2µr2

] dr (25)

with consequences illustrated in Figure 6. An orbit will close (and motion
along it be periodic) if there exist integers m and n such that

m∆θ = n2π

Many potentials give rise to some closed orbits, but it is the upshot of Bertrand’s
theorem12 that only two power-law potentials

U(r) = kr2 : isotropic oscillator
U(r) = −k/r : Kepler problem

have the property that every bound orbit closes (and in both of those cases
closure occurs after a single circuit.

12 I return to this topic in §7, but in the meantime, see §3.6 and Appendix A
in the 2nd edition () of H. Goldstein’s Classical Mechanics. . Or see §2.3.3
in J. V. José & E. Saletan, Classical Dynamics : A Contemporary Approach
().
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Figure 5: Graphs of U(r), shown here for ascending values of
angular momentum ( in the Keplerian case U(r) = −k/r (lowest
curve). When E < 0 the orbit is bounded by turning points at
rmin and rmax. When rmin = rmax the orbit is necessarily circular
(pursued with constant r) and the energy is least-possible for the
specified value of (. When E � 0 the orbit has only one turning
radius: rmax ceases to exist, and the physics of bound states becomes
the physics of scattering states. The radius rmin of closest approach
is (-dependent, decreasing as ( decreases.

Circular orbits (which, of course, always—after a single circuit—close upon
themselves) occur only when the values of E and ( are so coordinated as to
achieve rmin = rmax (call their mutual value r0). The energy E is then least
possible for the specified angular momentum ( (and vice versa). For a circular
orbit one has (as an instance of T = 1

2Iω2 = L2/2I )

kinetic energy T = (2

2µr2
0

but the relation of T to E = T + U(r0) obviously varies from case to case.
But here the virial theorem13 comes to our rescue, for it is an implication of
that pretty proposition that if U(r) = krn then on a circular orbit T = n

2 U(r0)
which entails

E = n+2
n T = n+2

2 U

For an oscillator we therefore have

E = 2 · (2

2µr2
0

= 2 · µω2r2
0

2⇓
r2
0 = (/µω⇓

E = (ω

13 We will return also to this topic in §7, but in the meantime see Goldstein12

or thermodynamics & statistical mechanics (), pages 162–164.
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Figure 6: Typical bound orbit, with θ advancing as r oscillates
between rmax and rmin, the total advance per oscillation being given
by (25). In the figure, radials mark the halfway point and end of
the first such oscillation.

Figure 7: Typical unbounded orbit, and its asymptotes. The angle
between the asymptotes (scattering angle) can be computed from
(26). The dashed circle (radius rmin) marks the closest possible
approach to the force center, which is, of course, {E, (}-dependent.
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which by the quantization rule � �→ n� would give

E = n�ω : n = 0, 1, 2, . . .

Similarly, in case of the Kepler problem we have

E = − �2

2µr2
0

= 1
2 (−k/r0)

⇓
r0 = �2

µk⇓
E = −µk2

2�2

which upon formal quantization yields Bohr’s

E = −µk2

2�2
1
n2

: n = 1, 2, 3, . . .

If E is so large as to cause the orbit to be unbounded then (questions
of closure and periodicity do not arise, and) an obvious modification of (25)
supplies

∆θ ≡ scattering angle

= 2
∫ ∞

rmin

�/µr2√
2
µ

[
E − U(r) − �2

2µr2

] dr (26)

Even for simple power-law potentials U = krn the integrals (25) and (26)
are analytically intractable except in a few cases (so say the books, and
Mathematica appears to agree). Certainly analytical integration is certainly
out of the question when U(r) is taken to be one or another of the standard
phenomenological potentials—such, for example, as the Yukawa potential

U(r) = −ke−λr

r

But in no concrete case does numerical integration pose a problem.

3. Orbital design. We learned already in Chapter 1 to distinguish the design of a
trajectory (or orbit) from motion along a trajectory . We have entered now into
a subject area which in fact sprang historically from a statement concerning
orbital design: the 1st Law () of Johannes Kepler (–) asserts that
“planetary orbits are elliptical, with the sun at one focus.” We look to what
can be said about orbits more generally (other central force laws).

We had at bottom of page 13 a differential equation satisfied by θ(r). For
many purposes it would, however, be more convenient to talk about r(θ), and
in pursuit of that objective it would be very much to our benefit if we could
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find some way to avoid the functional inversion problem presented by θ(r). To
that end we return to the Lagrangian (17), which supplies

µr̈ − µrθ̇2 = − d
dr U(r)

≡ f(r)

But at (20) we had θ̇ = �/µr2, so

µr̈ − �2/µr3 = f(r)

From (20) it follows also that d
dt = (�/µr2) d

dθ so we have

(�2/µ)
[

1
r2

d
dθ

1
r2

d
dθ r − (1/r3)

]
= f(r)

Introduce the new dependent variable u = 1/r and obtain

[
u2 d

dθu2 d
dθ

1
u − u3

]
= (µ/�2)f( 1

u )

whence

d2u
dθ2

+ u = (µ/�2) 1
u2 f( 1

u )

= −(µ/�2)
dU( 1

u )
du

(27.1)

For potentials of the form U(r) = krn we therefore have

= +n(kµ/�2) u−n−1 (27.2)

The most favorable cases, from this point of view, are n = −1 and n = −2.

EXAMPLE: Harmonic central potential We look to the case U(r) = 1
2µω2r2

where (27.2) reads
d2u
dθ2

+ u = (µω/�)2u−3 (28)

and, because our objective is mainly to check the accuracy of recent asser-
tions, we agree to “work backwards;” i.e., from foreknowledge of the elementary
fact that the orbit of an isotropic oscillator is a centered ellipse. In standard
orientation

x2

a2
+ y2

b2
= 1

⇓
r(θ) =

√
a2b2

b2 cos2 θ + a2 sin2 θ
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Figure 8: Figure derived from (29), inscribed on the
{
a, b

}
-plane,

shows a hyperbolic curve of constant angular momentum and several
circular arcs of constant energy. The energy arc of least energy
intersects the �-curve at a = b: the associated orbit is circular.

Figure 9: Typical centered elliptical orbit of an isotropic harmonic
oscillator, showing circles of radii rmax = a and rmin = b. The
isotropic oscillator is exceptional (though not quite unique) in that
for this as for all orbits the angular advance per radial oscillation
is ∆θ = π : all orbits close after a single circuit.
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so for an arbitrarily oriented centered ellipse we have

u(θ) =

√
b2 cos2(θ − δ) + a2 sin2(θ − δ)

a2b2

Mathematica informs us that such functions satisfy (28) with

� = µωab (29.1)

Such an orbit is pursued with energy

E = 1
2µω2(a2 + b2) (29.2)

From (29) we obtain

a2 = E
µω2

[
1 ±

√
1 −

(
�ω
E

)2
]

b2 = E
µω2

[
1 ∓

√
1 −

(
�ω
E

)2
]

Evidently circular orbits (a = b) require that E and � stand in the relation E =
�ω encountered already at the bottom of page 15 (see Figure 8). Returning
with (29) to (25) we find that the angular advance per radial oscillation is given
by

∆θ = 2
∫ a

b

ab/r2√
a2 + b2 − r2 − a2b2/r2

dr

= π : all {a, b}, by numerical experimentation

which simply reaffirms what we already knew: all isotropic oscillator orbits are
closed/periodic (see Figure 9).

4. The Kepler problem: attractive 1/r2 force. Here

U(r) = −k 1
r : k > 0

and the orbital equation (27.2) reads

d2u
dθ2

+ u = (kµ/�2)u0

≡ p

or again
d2v
dθ2

+ v = 0 with v ≡ u − p

Immediately v(θ) = q cos(θ − δ) so

r(θ) = 1
p + q cos(θ − δ)

= α
1 + ε cos(θ − δ)

: more standard notation (30)
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Figure 10: Keplerian ellipse (30) with eccentricity ε = 0.8. The
circles have radii

rmin = α
1 + ε

: “pericenter”

rmax = α
1 − ε

: “apocenter”

When the sun sits at the central focus the “pericenter/apocenter”
become the “perihelion/aphelion,” while if the earth sits at the focus
one speaks of the “perigee/apogee.” It is clear from the figure, and
an immediate implication of (30), that

∆θ = 2π

Equation (30) provides—as Kepler asserted, as a little experimentation with
Mathematica’s PolarPlot[etc] would strongly suggest, and as will presently
emerge—the polar description of an ellipse of eccentricity ε with one focus at
the force center (i.e., at the origin).

To figure out how α and ε depend upon energy and angular momentum
we return to (23) which gives

θ =
∫

r−2√
p + qr−1 − r−2

dr

= −
∫

1√
p + qu − u2

du

= arctan
{

q − 2u

2
√

p + qu − u2

}
= arcsin

{
q − 2u√
q2 + 4p

}
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Figure 11: Graphs of confocal Keplerian conic sections

r = 1
1 − ε cos θ

with ε = 0.75, 1.00, 1.25.

where now p ≡ 2Eµ/�2 and q ≡ 2kµ/�2. So we have

u = 1
2q − 1

2

√
q2 + 4p sin θ

and have only to adjust the point from which we measure angle (θ �→ θ − 1
2π)

to recover (30) with (see the figure)

α = 2/q = �2

µk

0 � ε =
√

1 + 4p/q2 =
√

1 + 2E�2

µk2

{
< 1 : ellipse
= 1 : parabola
> 1 : hyperbola

(31)

To achieve a circular orbit (ε = 0) one must have

E = −µk2

2�2
i.e., E�2 = − 1

2µk2

which was encountered already on page 17, and which describes
• the least energy possible for a given angular momentum
• the greatest angular momentum possible for a given energy

for if these bounds were exceeded then ε would become imaginary.

The semi-major axis of the Keplerian ellipse is

a = 1
2 (rmin + rmax) = α

1 − ε2
(32.1)

= − k
2E

: positive because E < 0
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while the semi-minor axis (got by computing the maximal value assumed by
r(θ) sin θ ) is

b = α√
1 − ε2

=
√

aα (32.2)

= �√
−2µE

: real for that same reason

The distance from center to focus is f = εa so the distance from focus to
apocenter is (1−ε)a = α/(1+ε) = rmin: this little argument serves to establish
that the force center really does reside at a focal point.

Concerning secular progress along an orbit : the area swept out by r is

A(θ) = 1
2

∫ θ

r2(ϑ) dϑ

so the rate of growth of A is

Ȧ = 1
2r2θ̇ = 1

2µ� : constant for every force law (33)

Multiplication by the period τ gives 1
2µ�τ = πab = πa

√
aα whence (by (31))

τ2 = 4π2µ2

�2
αa3 = 4π2µ

k
a3 (34)

In the gravitational case one has

µ

k
= 1

Gm1m2
· m1m2

m1 + m2
= 1

G(m1 + m2)

If one had in mind a system like the sun and its several lesser planets one might
write (

τ1

τ2

)2

= M + m2

M + m1

(
a1

a2

)3

and with the neglect of the planetary masses obtain Kepler’s 3rd Law ()(
τ1

τ2

)2

≈
(

a1

a2

)3

(35)

It is interesting to note that the harmonic force law would have supplied, by
the same reasoning (but use (29.1)), 1

2µ�τ = πab = π�/µω whence

τ = 2π/ω : all values of E and �

We have now in hand, as derived consequences of Newton’s Laws of Motion
and Universal Law of Gravitation,

• kepler’s first law of planetary motion: Planets pursue elliptical
orbits, with the sun at one focus;

• kepler’s second law: The radius sweeps out equal areas in equal times;
• kepler’s third law: For any pair of planets, the square of the ratio of

periods equals the cube of the ratio of semi-major axes.
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Kepler’s accomplishment is really quite amazing. He worked with data—
relating mainly to the orbit of Mars—inherited from Tycho Brahe (–),
who was a naked-eye astronomer, working before the invention of the telescope,
and even without the benefit of reliable clocks. Logarithms were at the time
a new invention, and Kepler had to construct his own log tables. The ellip-
ticity of Mars’ orbit (which is strongly perturbed by Jupiter) is relatively
pronounced (εMars ranges between 0 and 0.14, while εEarth ranges between
0 and 0.06), yet it was radical to suggest that planetary orbits were elliptical,
when it had been accepted on good authority for many centuries that they
were epicyclic—assembled from perfect circles, as befits the perfect heavens.
Kepler worked from data, without the support of a theoretical dynamics—that
development had to wait seventy-five years for Newton to complete his work.
Newton cites Kepler’s accomplishment as a principal motivation in the opening
pages of the Principia, and considered his ability to account theoretically for
Kepler’s laws to be persuasive evidence of his own success: when he remarked
that it had been his good fortune to “stand on the shoulders of giants” it was
Copernicus, Galileo and (I suspect especially) Kepler that he had in mind. But
Kepler himself died ignorant of (among other implications of his work) the facts
that—while his 1st and 3rd Laws are specific to 1/r2 attractive interactions—
his 2nd Law is a statement simply of the conservation of angular momentum,
and holds for all central forces. So, for that matter, did Newton: the concept
of “angular momentum” was not invented until about twenty-five years after
Newton’s death. By Euler.

5. Kepler’s equation. Planetary astronomers used to—and perhaps still do—
have practical reason to construct Figure 12. Introducing an angle

τ ≡ 2π t
period

: clock started at pericenter

(known to astronomers as the “mean anomaly”) and importing from the physics
of the situation only Kepler’s 2nd Law, one arrives at “Kepler’s equation” (also
called “the equation of time”)

τ = θ0 − ε sin θ0 (36)

The problem—first confronted by Kepler—is to achieve the functional inversion
of (36), for if that could be accomplished then one could insert θ0(τ) onto (37)
to obtain a polar description of the motion of the planet along its elliptial orbit .

I have read that more than 600 solutions of—we would like to call it
“Kepler’s problem”—have been published in the past nearly 400 years, many
of them by quite eminent mathematicians (Lagrange, Gauss, Cauchy, Euler,
Levi-Civita). Those have been classified and discussed in critical detail in a
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a r

θ0 θ
center focus

Figure 12: Circle inscribed about a Keplerian ellipse, showing the
relation of the “eccentric anomaly” θ0 to the “true anomaly” θ.
One can show, using only elementary relations standard to the
geometrical theory of ellipses, that

r = a(1 − ε cos θ0)

tan 1
2θ =

√
1 + ε
1 − ε

tan 1
2θ0


 (37)

These equations serve, in effect, to provide a parametric description
{r(θ0), θ(θ0)} of the polar representation of a Keplerian ellipse (by
which phrase I mean an ellipse with one focus at the polar origin).
Elimination of the parameter would give back

r =
a(1 − ε2)
1 + ε cos θ

which by (32.1) is equivlent to (30): case δ = 0.

recent quite wonderful book.14 I propose to sketch Kepler’s own solution and
the approach to the problem that led Bessel to the invention of Bessel functions.

14 Peter Colwell, Solving Kepler’s Equation over Three Centuries ().
Details of the arguments that lead to (36) and (36) can be found there; also in
the “Appendix: Historical introduction to Bessel functions” in relativistic
classical field theory (), which provides many references to the
astronomical literature.
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2π

π

π 2π

Figure 13: Kepler’s function K(x; ε) ≡ x − ε sinx, shown with
ε = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

To solve y = K(x; ε) Kepler would first guess a solution (the “seed” x0) and
then compute

y0 = K(x0)
y1 = K(x1) with x1 = x0 + (y − y0)
y2 = K(x2) with x2 = x1 + (y − y1)

...

EXAMPLE: Suppose the problem is to solve 1.5000 = K(x; 0.2). To the command

FindRoot[1.5000==K[x,0.2], {x,1.5}]

Mathematic responds x→ 1.69837

Kepler, on the other hand—if he took x0 = 1.5000 as his seed—would respond

1.3005 = K(1.5000)
1.5000 + (1.5000 − 1.3005) = 1.6995

1.5012 = K(1.6995)
1.6995 + (1.5000 − 1.5012) = 1.6983

1.5000 = K(1.6983)

and get 4-place accuracy after only two iterations—even though ε = 0.2 is large
by planetary standards. Colwell14 remarks that both Kepler’s equation and his
method for solving it can be found in 9th Century work of one Habash-al-Hasib,
who, however, took his motivation not from astronomy but from “problems of
parallax.”
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We make our way now through the crowd at this convention of problem-
solvers to engage Bessel15 in conversation. Bessel’s idea—which16 iin retrospect
seems so straightforward and natural—was to write

θ0(τ) − τ = ε sin θ0(τ) = 2
∞∑
1

Bn sinnτ

From the theory of Fourier series (which was a relative novelty in ) one has

Bn = 1
π

∫ π

0

[θ0(τ) − τ ] sinnτ dτ

= − 1
nπ

∫ π

0

[θ0(τ) − τ ] d(cos nτ)

= − 1
nπ [θ0(τ) − τ ] cos nτ

∣∣∣π
0︸ ︷︷ ︸ + 1

nπ

∫ π

0

cos nτ d[θ0(τ) − τ ]

= 0 because θ0(τ) − τ vanishes at the apses

= 1
nπ

∫ π

0

cos nτ dθ0(τ) − 1
nπ

∫ π

0

cos nτ dτ︸ ︷︷ ︸
= 0 for n = 1, 2, 3 . . .

= 1
nπ

∫ π

0

cos n(θ0 − ε sin θ0) dθ0

15 Regarding the life and work of Friedrich Wilhelm Bessel (–): it
was to prepare himself for work as a cabin-boy that, as a young man, he took
up the study of navigation and practical astronomy. To test his understanding
he reduced some old data pertaining to the orbit of Halley’s comet, and made
such a favorable impression on the astronomers of the day (among them Olbers)
that in , at the age of 26, he was named Director of the new Königsberg
Observatory. Bessel was, therefore, a contemporary and respected colleague
of K. F. Gauss (–), who was Director of the Göttingen Observatory.
Bessel specialized in the precise measurement of stellar coordinates and in the
observatio of binary stars: in  he computed the distance of 61 Cygni, in
 he discovered the dark companion of Sirius, and in  he determined
the mass, volume and density of Jupiter. He was deeply involved also in the
activity which led to the discovery of Neptune (). It was at about that time
that Bessel accompanied his young friend Jacobi (–) to a meeting of
the British Association—a meeting attended also by William Rowan Hamilton
(–). Hamilton had at twenty-two (while still an undergraduate) been
appointed Royal Astronomer of Ireland, Director of the Dunsink Observatory
and Professor of Astronomy. His name will forever be linked with that of
Jacobi, but on the occasion—the only time when Hamilton and Jacobi had an
opportunity to exchange words face to face—Hamilton reportedly ignored
Jacobi, and seemed much more interested in talking to Bessel.

16 Note that θ0 − τ is, by (36), an odd periodic function of θ0, and therefore
of τ .
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—the variable-of-integration role having beentaken over here by θ0, which
ranges from 0 to π as τ does. Thus does Bessel obtain

Bn = 1
nJn(nε)

where

Jn(x) ≡ 1
π

∫ π

0

cos(nϕ − x sinϕ) dϕ

serves to define the Bessel function of integral order n. Bessel’s inversion of the
Kepler equation can now be described

θ0(τ) = τ + 2
∞∑
1

1
nJn(nε) sinnτ (38)

If confronted with our EXAMPLE (page 26, Bessel would write17

θ0(1.50000

= 1.50000 + 2
{

0.09925 + 0.00139 − 0.00143 − 0.00007 + 0.00005 + · · ·
}

= 1.69837

which is precise to all the indicated decimals. The beauty of (38) is, however,
that it speaks simultaneously about the θ0(τ) that results from every value of
τ , whereas Kepler’s method requires one to reiterate at each new τ -value. For
small values of ε Bessel’s (38) supplies

θ0(τ) = τ +
{
ε − 1

8ε3 + 1
192ε5 + . . .

}
sin τ

+
{

1
2ε2 − 1

6ε4 + · · ·
}

sin 2τ

+
{

3
8ε3 − 27

128ε5
}

sin 3τ

+
{

1
3ε4 + · · ·

}
sin 4τ + · · ·

Bessel pioneered the application of Fourier analysis to a variety of astronomical
problems, and had more to say also about its application to the inversion of
Kepler’s equation: for discussion of the fascinating details, see pages 27–40 in
Colwell.14

6. The Runge-Lenz vector. While the history of linear algebra is a famously
tangled tale to which dozens of prominent mathematicians contributed (often
contentiously), the history of what we have come to call “vector analysis” is
a story of stark simplicity. The subject is the creation (during the s)
of one man—Josiah Willard Gibbs (–), whose Yankee intent was to
extract from that jumbled wisdom a simple tool with the sharp practical utility
of a scythe. The first public account of his work appeared in Vector Analysis by

17 Use the Mathematica command BesselJ[n,x] to evaluate Jn(x).
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J. W. Gibbs & E. B. Wilson (),18 and it is from §61 Example 3 that I take
the following argument.19

Let a mass point µ move subject to the central force FFF = − k
r2 x̂xx. From the

equation of motion
µẍxx = − k

r3 xxx

it follows that d
dt (xxx×µẋxx) = 000, from which Gibbs obtains the angular momentum

vector as a “constant of integration:”

xxx × µẋxx = LLL : constant

Gibbs (in a characteristic series of masterstrokes) invites us now to construct

ẍxx ×LLL = − k
r3 xxx ×LLL

and to notice that

expression on the left = d
dt

{
µẋxx ×LLL

}
expression on the right = −µk

r3 xxx × (xxx × ẋxx)

= −µk
r3

{
(xxx···ẋxx)xxx − (xxx···xxx)ẋxx

}
= −µk

r3

{
(rṙ)xxx − r2ẋxx

}
= d

dt

{
µk 1

rxxx
}

entail
ẋxx ×LLL = k 1

rxxx + KKK

where
KKK = ẋxx ×LLL − k 1

rxxx : constant of integration

precisely reproduces the definition of a constant of Keplerian motion additional
to energy and angular momentum that has become known as the “Runge-Lenz
vector”. . . though as I understand the situation it was upon Gibbs that Runge
patterned his (similarly pedagogical) discussion, and from Runge that Lenz
borrowed the KKK that he introduced into the “old quantum theory of the

18 The book—based upon class notes that Gibbs had developed over a period
of nearly two decades—was actually written by Wilson, a student of Gibbs
who went on to become chairman of the Physics Department at MIT and later
acquired great distinction as a professor at Harvard. Gibbs admitted that he
had not had time even to puruse the work before sending it to the printer.
The book contains no bibliography, no reference to the literature apart from
an allusion to work of Heaviside and Föpple which can be found in Wilson’s
General Preface.

19 The argument was intended to illustrate the main point of §61, which is
that “the . . . integration of vector equations in which the differentials depend
upon scalar variables needs but a word.”
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b

f a
KKK

Figure 14: Orientation of the Runge-Lenz vector in relation to the
Keplerian ellipse along which the particle is moving.

hydrogen atom,” with results that are remembered only because they engaged
the imagination of the young Pauli.20

What is the conservation of

KKK = 1
µ ppp ×LLL − k

r xxx (39)

trying to tell us? Go to either of the apses (points where the orbit intersects
the principal axis) and it becomes clear that

KKK runs parallel to the principal axis

(because at those points ppp ×LLL and xxx both do). Dotting (39) into itself we get

KKK···KKK = 1
µ2 (ppp ×LLL)···(ppp ×LLL) − 2 k

µr (ppp ×LLL)···xxx + k2 1
r2 xxx···xxx

= 1
µ2 p2�2 − 2 k

µr �pr + k2 by evaluation at either of the apses

= 2
µ

[
1
2µp2 − k

r

]
�2 + k2

giving
K2 = 2

mE�2 + k2

which by (31) becomes = (kε)2 (40)

K is “uninteresting” in that its conserved value is implicit already in the
conserved values of E and �, but interestingly it involves those parameters

20 In “Prehistory of the ‘Runge-Lenz’ vector” (AJP 43, 737 (1975)) Goldstein
traces the history of what he calls the “Laplace-Runge-Lenz vector” back to
Laplace (). Reader response to that paper permitted him in a subsequent
paper (“More on the prehistory of the Laplace-Runge-Lenz vector,” AJP 44,
1123 (1976)) to trace the idea back even further, to the work of one Jacob
Hermann () and its elaboration by Johann Bernoulli ().
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P

O

C

KKK q

Q

KKK⊥

Figure 15: Keplerian orbit G superimposed upon the hodograph H.
It was Hamilton’s discovery that the Keplerian hodograph is circular,
centered on a line which stands normal to the principal axis at the
force center O. Q identifies the momentum at the pericenter, and
q the associated orbital tangent. The dogleg construction

OP = OC + CP

illustrates the meaning of (41), and the dashed lines indicate how
points on the hodograph are to be associated with tangents to the
orbit.

only as they combine to describe the eccentricity of the Keplerian orbit.
Additional light is cast upon the role of KKK by the following observations:

The motion of a particle in a central force field traces in its effectively
4-dimensional phase space a curve C. Projection of C onto the xxx-plane produces
a curve G familiar as the “trajectory” (or “orbit”) of the particle. Projection
onto the ppp -plane produces a less familiar curve H called the “hodograph.” In the
case of central 1/r2 forces the curves G are of course just the ellipses/parabolas/
hyperbolas identified by Kepler and reproduced by Newton, but the associated
“Keplerian hodographs” were apparently first studied by Hamilton21 (who gave
such curves their name). Working from (39), we have

KKK⊥ ≡ LLL ×KKK = 1
µ�2ppp − k

rLLL ×xxx

21 See Chapter 24 of T. L. Hankins’ Sir William Rowan Hamilton () and
the second of the Goldstein papers previously cited.20 It was in connection with
this work—inspired by the discovery of Neptune ()—that Hamilton was led
to the independent (re/pre)invention of the “Hermann-. . . -Lenz” vector.
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giving
ppp = (µ/�2)KKK⊥ + (µk/�2)LLL × x̂xx

= (constant vector of length µK
� )

+ ( vector that traces a circle of radius µk
� )

From (40) it now follows that

(radius)2 − (displacement)2 = −2µE

{
> 0 : elliptical orbit
= 0 : parabolic orbit
< 0 : hyperbolic orbit

We are brought thus to the striking conclusion—illustrated in Figure 15, and
apparently overlooked by Newton—that the Keplerean hodograph H is in all
cases circular , and envelops the origin (or doesn’t) according as the trajectory
G is bound (or unbound).

Bringing (40) to (39) we have

kεK̂KK = 1
µ ppp ×LLL − k

r xxx

which when dotted into xxx gives

kεr cos θ = 1
µxxx···(ppp ×LLL) − kr

= 1
µLLL···(xxx ×ppp) − kr

= 1
µ�2 − kr

⇓
r =

�2/µk

1 + ε cos θ
(41)

And this, we have known since (30/31), provides a polar description of the
Keplerian orbit . It is remarkable that KKK provides a magical high-road to the
construction of both G and H.

We are in position now to clear up a dangling detail: at the pericenter (39)
assumes the form

KKK = (vector of length �2/µrmin directed toward the pericenter)
+ (vector of length k directed toward the apocenter)

But from (41) it follows that

�2/µrmin = k(1 + ε) � k

so for non-circular orbits (ε > 0) the former vector predominates: the KKK vector
is directed toward the pericenter, as was indicated in Figure 14. From results
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now in hand it becomes possible to state that the center of the orbital ellipse
resides at

CCC = −fK̂KK = −(f/kε)KKK = −(a/k)KKK

It will be appreciated that the invariance of the Runge-Lenz vector is a
property special to the Kepler problem. Quite generally,

K̇KK = [KKK, H ]

and if 22

H = 1
2µppp···ppp − κ(xxx···xxx)−n/2

then (with major assistance by Mathematica) we compute

K̇KK = krn − nκr
µ r 3+n

(xxx ×LLL)

= 0 if and only if n = 1 and k = κ

It seems natural to suppose that by watching the motion of KKK we could get a
natural handle on the orbital precession that results (except in the harmonic
case n = −4, κ = −µω2) when n �= 1. I mention in this connection that if were
to define

KKKn ≡ 1
µ ppp ×LLL − (κ/rn)xxx

then, by computation, we would have

K̇KKn = [KKKn, H ] =
(n − 1) κ

µ

ppp

rn

—the implication being that KKKn may be a more natural object to discuss in
such a connection than KKK itself.

6. Accidental symmetry. Conservation laws speak to us of symmetry . When a
particle m moves in the presence of an impressed central force FFF = −∇∇∇U(r) we
expect generally to have four conservation laws

[H, H] = 0 and [H,LLL ] = 000

but in the Keplerian case

H = 1
2mppp···ppp − k√

xxx···xxx

we have an additional three:
[H,KKK ] = 000 (42)

22 Notice that [κ/rn] = [k/r] = energy.



34 Central force problems

To what symmetry can (42) refer? That LLL-conservation refers to the rotational
symmetry of the system can be construed to follow from the observation that
the Poisson bracket algebra

[L1, L2] = L3

[L2, L3] = L1

[L3, L1] = L2

is identical to the commutator algebra satisfied by the antisymmetric generators
of 3×3 rotation matrices: write

R = eA with A =


 0 −a3 a2

a3 0 −a1

−a2 a1 0


 = a1L1 + a2L2 + a3L3

and observe that
[ L1, L2] = L3

[ L2, L3] = L1

[ L3, L1] = L2

Thus inspired, we compute23

[L1, K1] = [L2, K2] = [L3, K3] = 0

[L1, K2] = +K3 [L1, K3] = −K2

[L2, K3] = +K1 [L2, K1] = −K3

[L3, K1] = +K2 [L3, K2] = −K1

[K1, K2] = (−2H/m)L3

[K2, K3] = (−2H/m)L1

[K3, K1] = (−2H/m)L2

Defining
JJJ ≡ KKK/

√
−2H/m (43)

we therefore have
[Li, Lj ] = εijkLk

[Li, Jj ] = εijkJk

[Ji, Jj ] = εijkLk


 (44)

From (44) it quickly follows, by the way, that

[L2,LLL ] = 000

[L2, JJJ ] = −2LLL×JJJ

[J2,LLL ] = 000

[J2, JJJ ] = +2LLL×JJJ

23 The calculation is enormously tedious if attempted by hand, but presents
no problem at all to Mathematica.
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and that
[L2, J2] = 0

with L2 ≡ LLL···LLL and J2 ≡ JJJ···JJJ , but heavy calculation is required to establish
finally that

L2 + J2 = −k2
[

2
mH

]–1 (45)

On a hunch we now write


0 −b1 −b2 −b3

b1 0 −a3 +a2

b2 +a3 0 −a1

b3 −a2 +a1 0


 = a1L1 + a2L2 + a3L3 + b1J1 + b2J2 + b3J3

and observe that the computed commutation relations

[ Li, Lj ] = εijkLk

[ Li, Jj ] = εijk Jk

[ Ji , Jj ] = εijkLk


 (46)

are structurally identical to (44). The clear implication is that the “accidental”
constants of motion J1(xxx, ppp), J2(xxx, ppp), J3(xxx, ppp) have joined L1(xxx, ppp), L2(xxx, ppp),
L3(xxx, ppp) to lead us beyond the group O(3) of spherical symmetries written
onto the face of every central force system. . . to a group O(4) of canonical
transformations that live in the 6-dimensional phase space of the system. The
Li(xxx, ppp) fit naturally within the framework provided by Noether’s theorem, but
the generators Ji(xxx, ppp) refer to a symmetry that lies beyond Noether’s reach.

The situation is clarified if one thinks of all the Keplerian ellipses that can
be inscribed on some given/fixed orbital plane, which we can without loss of
generality take to be the {x1, x2}-plane. The lively generators are then

L3(x1, x2, p1, p2), J1(x1, x2, p1, p2) and J2(x1, x2, p1, p2),

which support the closed Poisson bracket sub-algebra

[J1, J2] = L3

[J2, L3] = J1

[L3, J1] = J2

To emphasize the evident fact that we have now in hand the generators of
another copy of O(3) we adjust our notation

J1 → S1

J2 → S2

L3 → S3

so that the preceding relations become simply

[Si, Sj ] = εijkSk (47.1)
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Figure 16: Confocal population {G}E of isoenergetic Keplerian
orbits. The population is mapped onto itself under action of the
generating observables {S1, S2, S3}. The “isoenergetic” presumption
is reflected in the circumstance that all such ellipses have the same
semi-major axis.

while (45) becomes

S2
1 + S2

2 + S2
3 = S2

0 with S2
0 ≡ −k2m/2H (47.2)

We have arrived here at apparatus very similar to that which Stokes/Poincaré
devised to describe the states of elliptically polarized light. The observables
{S1, S2, S3}—of which, by (47.2), only two are, at given energy, independent—
generate canonical transformations that serve to map onto itself the set {C}E

of all Keplerian curves inscribed within a certain 4-dimensional subspace of
6-dimensional phase space. Projected onto the {x1, x2}-plane, {C}E becomes
the set {G}E of all isoenergetic Keplerian orbits (Figure 16), and when
projected onto the {p1, p2}-plane it becomes the companion set {H}E of all
Keplerian hodographs.

One major detail remains to be discussed (plus any number of smaller ones
with which I will not test my reader’s patience). We have tacitly restricted our
attention thus far to closed Keplerian orbits (it being the atypical/accidental
closure of such orbits that makes the whole exercise possible!). For closed orbits
E < 0, so the observables JJJ introduced at (43) are real. But for hyperbolic
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orbits E > 0 and we are forced to adjust the definition, writing

JJJ ≡ KKK/
√

+2H/m (48.1)

In place of (44) we then have

[Li, Lj ] = εijkLk

[Li, Jj ] = εijkJk

[J i, Jj ] = −εijkLk


 (48.2)

and are led to construct

B ≡




0 +b1 +b2 +b3

b1 0 −a3 +a2

b2 +a3 0 −a1

b3 −a2 +a1 0


 = a1L1 + a2L2 + a3L3 + b1J1 + b2J2 + b3J3

and to observe that
[ Li, Lj ] = εijkLk

[ Li, Jj ] = εijk Jk

[ Ji , Jj ] = −εijkLk


 (49)

But eB will be recognized to be a Lorentz matrix. The clear implication is that
the hyperbolic isoenergetic phase curves CE>0 are interrelated not by elements
of O(4) but by elements of the Lorentz group! It is curious to find the Lorentz
group living right in the middle of one of the most classical of problems, speaking
to us of deep things that have nothing at all to do with relativity.

The preceding discussion sprang, as was remarked just above, from the
exceptional circumstance that bound orbits in the presence of an attractive
1/r2-force all close upon themselves. Bertrand’s theorem asserts that the same
property attaches to one—and only one—alternative force law: the harmonic
force. It becomes therefore natural to ask: Can a similar story be told—does
“accidental symmetry” arise—also in that case? Indeed it can, and does . . . as
I now demonstrate:

The Hamiltonian H = 1
2m (p2

1 + p2
2) + 1

2mω2(x2
1 + x2

2) of a 2-dimensional
isotropic oscillator can be written

H = 1
2ω(a∗

1a1 + a∗
2a2)

with
ak ≡

√
mω xk + ipk/

√
mω

a∗
k ≡

√
mω xk − ipk/

√
mω

Define

G1 ≡ 1
2 ω(a∗

1a1 − a∗
2a2) = 1

2m (p2
1 − p2

2) + 1
2mω2(x2

1 − x2
2)

G2 ≡ 1
2 ω(a∗

1a2 + a∗
2a1) = 1

m p1p2 + mω2x1x2

G3 ≡ 1
2iω(a∗

1a2 − a∗
2a1) = ω(x1p2 − x2p1)
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and observe that
[H, G1] = [H, G2] = [H, G3] = 0

G3-conservation is angular momentum conservation, and is an anticipated
reflection of the rotational symmetry of the system. But the other two
conservation laws were not anticipated (though G1-conservation is, in
retrospect, certainly not hard to understand). Now observe that

[G1, G2] = 2ωG3

[G2, G3] = 2ωG1

[G3, G1] = 2ωG2

and
G2

1 + G2
2 + G2

3 = H2

A final notational adjustment

S0 ≡ 1
2ω H

Si ≡ 1
2ω Gi

places us in position to write

[Si, Sj ] = εijkSk

S2
1 + S2

2 + S2
3 = S2

0

We have again (compare (47)) encountered O(3), manifested this time as the
group of canonical transformations that shuffle the isoenergetic curves {C}E

of an isotropic oscillator amongst themselves in 4-dimensional phase space,
and that by projection serve to shuffle centered ellipses on the {x1, x2}-plane.
At this point we have constructed not “apparatus very similar to that which
Stokes/Poincaré devised to describe the states of elliptically polarized light”
but precisely that apparatus, pressed here into alternative physical service. So
far as I can determine, O(4) is now not hovering in the wings, and certainly
we do not have to concern ourselves with unbounded oscillator orbits. What is
hovering in the wings is the group SU(2) and the associated theory of spinors,
as becomes immediately evident when one notices that one can write

S0 = 1
4

(
a∗
1

a∗
2

)
T
(

1 0
0 1

)(
a1

a2

)

S1 = 1
4

(
a∗
1

a∗
2

)
T
(

1 0
0 −1

)(
a1

a2

)

S2 = 1
4

(
a∗
1

a∗
2

)
T
(

0 1
1 0

)(
a1

a2

)

S3 = 1
4

(
a∗
1

a∗
2

)
T
(

0 −i
i 0

)(
a1

a2

)
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Figure 17a: Isotropic oscillator orbits (see again page 20)

r(θ) = ab√
a2 sin2(θ − δ) + b2 cos2(θ − δ)

of assorted angular momenta $ = mωab, placed in standard position
by setting δ = 0 and made isoenergetic by setting a2+b2 = 2E/mω2.
The enveloping circle has radius

√
a2 + b2.

Figure 17b: Representative members of the population {G}E of
such orbits that is mapped onto itself under action of generating
observables {S1, S2, S3} that are functionally distinct from, yet
algebraically identical to those encountered in connection with the
Kepler problem. Here $ and δ have been randomized.
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and that the traceless hermitian 2×2 matrices are Pauli matrices, well known
to be the generators of the group SU(2) of 2× 2 unitary matrices with unit
determinant.

Historically, the accidental symmetry issue has been of interest mainly to
quantum physicists, who sought to understand why it is that the energy spectra
of some systems (most notably the hydrogen atom and the isotropic oscillator)
display “accidental degeneracy”—more degeneracy than can be accounted for
by obvious symmetry arguments. We have touched here only on one side of the
story, the classical side: the more peculiarly quantum side of the story has to
do with the fact that the systems known to display accidental degeneracy are
systems in which the Schödinger equation can be separated in more than one
coordinate system.24

7. Virial theorem, Bertrand’s theorem. I have taken the uncommon step of linking
these topics because—despite the physical importance of their applications—
both have the feel of “mathematical digressions,” and each relates, in its own
way, to a global property of orbits. Also, I am unlikely to use class time to treat
either subject, and exect to feel less guilty about omitting one section than two!

The virial theorem was first stated () by Rudolph Clausius (–),
who himself seems to have attached little importance to his invention, though
its often almost magical utility was immediately apparent to Maxwell,25 and it
is today a tool very frequently/casually used by atomic & molecular physicists,
astrophysicists and in statistical mechanical arguments.26 Derivations of the
virial theorem can be based upon Newtonian27 or Lagrangian28 mechanics, but
here—because it leads most naturally to certain generalizations—I will employ
the apparatus provided by elementary Hamiltonian mechanics.

From Hamilton’s equations

ẋxx = +∂H(xxx, ppp)/∂ppp

ṗpp = +∂H(xxx, ppp)/∂xxx

24 Readers who wish to pursue the matter might consult H. V. McIntosh, “On
accidental degeneracy in classical and quantum mechanics,”AJP 27, 620 (1959)
or my own “Classical/quantum theory of 2-dimensional hydrogen” (), both
of which provide extensive references. For an exhaustive review see McIntosh’s
“Symmetry & Degeneracy” () at http://delta.cs.cinvestav.mx/m̃cintosh/
comun/symm/symm.html.

25 See his collected Scientific Papers, Volume II, page 410.
26 Consult Google to gain a sense of the remarkable variety of its modern

applications.
27 See, for example, H. Goldstein, Classical Mechanics (2nd edition ) §3-4.

Many applications are listed in Goldstein’s index. The 3rd edition ()
presents the same argument, but omits the list of applications.

28 See thermodynamics & statistical mechanics (), pages 162–166.
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it follows that for any observable A(xxx, ppp) one has

d
dtA =

n∑
i=1

{
∂A
∂xi

∂H
∂pi

− ∂H
∂xi

∂A
∂pi

}
≡ [A, H ] (50)

Assume the Hamiltonian to have the form

H = 1
2m ppp···ppp + U(xxx)

and look (with Clausius) to the case A = ppp···xxx. Then

d
dtA = [ppp···xxx, 1

2m ppp···ppp ] + [ppp···xxx, U(xxx)]
= 1

m ppp···ppp − xxx···∇∇∇U

Writing

a(t) ≡ 1
τ

∫ τ

0

a(t) dt ≡ time-average of a(t) on the indicated interval

we have
d
dtA =

A(τ) − A(0)
τ

= 2T + xxx···∇∇∇U

which will vanish if either
• A(t) is periodic with period τ , or
• A(t) is bounded.

Assuming one or the other of those circumstances to prevail, we have

T = 1
2xxx···∇∇∇U : defines what Clausius called the “virial” (51)

= − 1
2xxx···FFF

which is the “virial theorem” in its simplest form.

Suppose it were the case that

U(xxx) is homogeneous of degree n

Then xxx···∇∇∇U = nU(xxx) by Euler’s theorem, and the virial theorem becomes

T = n
2 U

which pertains more particularly to cases of the familiar type U = krn. Of
course, E = T + U holds at all times, so we have

E =
(
1 + 2

n
)
T =

(
1 + n

2

)
U

giving
E = 2T = 2U : case n = +2 (isotropic oscillator)

E = −T = 1
2 U : case n = −1 (Kepler problem)

For circular orbits both T and U become time-independent (their time-averages
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become equal to their constant values) and we have

E =
(
1 + n

2

)
k · (orbital radius)n

In the Keplerian case (U = −k/r) one is, on this basis, led directly to the
statement (compare (32.1))

rcircular orbit = −k/2E

which, of course, also follows—but not instantly—from FFF = mẍxx. The essential
point, however, is that the relations among E, T and U that hold for circular
orbits are shown by the virial theorem to hold in the time-averaged sense even
for non-circular bound orbits.

Not until  was it noticed29 that Clausius’ virial theorem is but the
simplest and most ancient representative of a broad class of such statements,
that the argument that led from (50) to (51) is so elemental, has so few moving
parts, that it admits of a great many variations, and—more to the point—that
many of those can be pressed into useful service. Let A(xxx, ppp) be any observable
of dynamically bounded variation. Then

[A, 1
2m ppp···ppp] = −[A, U(xxx)]

and the set of such “hypervirial theorems” can be expanded even further by
admitting Hamiltonians of more general design.

In quantum mechanics (50) becomes (in the Heisenberg picture)30

i� d
dtA = [A, H ]

from which it follows that the motion of 〈A〉 ≡ (ψ|A|ψ)—the expected mean
of a series of A-measurements, given that the system is in state |ψ)—can be
described

i� d
dt 〈A〉 = 〈[A, H ]〉

If 〈A〉 is of bounded variation (or periodic) then after time-averaging we have
the “quantum mechanical hypervirial theorem”

〈[A, H ]〉 = 0

which can be particularized in a lot of ways, and from which Hirschfelder and
his successors have extracted a remarkable amount of juice. There is, it will be
noted, a very close connection between

• Ehrenfest’s theorem,31 which speaks about the motion of expected values,
and

• quantum hypervirial theorems, which speak about time-averaged propeties
of such motion.

29 J. O. Hirschfelder,“Classical & quantum mechanical hypervirial theorems,”
J. Chem. Phys. 33,1462 (1960).

30 See advanced quantum topics (), Chapter 0, page 19.
31 See Chapter 2, pages 51–60 in the notes just cited.
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Joseph Bertrand (–)—born in the same year as Clausius—was a
French mathematician who is today best remembered for“Bertrand’s conjecture”
(if n > 1 then between n and 2n can be found at least one prime, and if n > 3
the same can be said of the integers between n and 2n − 2: the conjecture
was proven by Chebyshev in ), but by physicists for Bertrand’s theorem.32

A careful—if, it seems to me, disappointingly awkward—proof of Bertrand’s
theorem is presented as Appendix A in the 2nd edition of Goldstein’s Classical
Mechanics (). Goldstein proceeds in Bertrand’s pioneering footsteps, or so
I believe . . . and it is in any event in Goldstein’s footsteps that we will proceed.
We begin with some preparatory remarks concerning circular orbits:

It will be appreciated that in the presence of an attractive central potential
FFF (xxx) = −f(r) r̂rr one can have circular orbits of any radius. One has simply to
“tune the orbital speed” so as to achieve

mv2/r = f(r)

or which is the same: to set
$2 = mr3f(r) (52)

If, in particular, the central force derives from a potential of the form U = krn

(with k taking its sign from n) then f(r) = nkrn−1 and we have33

$2 = nmkrn+2

which entails T = 1
2mr2 $2 = 1

2nkrn = (n/2)U and so could have been obtained
directly from the virial theorem. A circular orbit of radius r0 will, however, be
stable (see again Figure 5) if an only if the effective potential

U(r) = U(r) + $2

2mr2

is locally minimal at r0 : U ′
(r0) = 0 and U ′′

 (r0) > 0. In the cases U = krn the
first condition is readily seen to require

rn+2
0 = $2

mnk

and the second condition therefore entails

n > −2

32 Bertrand’s sister Louise was married to his good friend, Charles Hermite,
who was also born in , and survived Bertrand by one year.

33 Note how odd is the case n = −2 from this point of view! . . . as it is also
from other points of view soon to emerge.
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It was remarked already on page 14 that the equation of radial motion can
be obtained from the “effective Lagrangian”

L = 1
2mṙ2 − U(r)

To describe motion in the neighborhood of r0 we write r = r0 + ρ and obtain

L = 1
2mρ̇2 −

{
U(r0) + U ′

(r0)ρ + 1
2U ′′

 (r0)ρ
2 + · · ·

}
= 1

2m
{
ρ̇2 − ω2ρ2

}
+ · · ·

The small amplitude solutions will oscillate or explode according as

ω2 ≡ U ′′
 (r0)

is positive or negative. Looking again to the cases U = krn we compute

U ′′
 (r0) = kn(n + 2)rn−2

0

which is positive if and only n > −2. And even when that condition is
satisfied, circular orbits with radii different from r0 are unstable. Stability
is the exception, certainly not the rule.

The argument that culminates in Bertrand’s theorem has much in common
with the argument just rehearsed, the principal difference being that we will
concern ourselves—initially in the nearly circular case—not with the temporal
oscillations of r(t) but with the angular oscillations of u(θ) ≡ 1/r(θ). At (27.1)
we had

d2u
dθ2

+ u =J(u) (53)

with

J(u) = (m/$2) 1
u2 f( 1

u ) = −(m/$2)
dU( 1

u )
du

while at (51) we found that u0 will refer to a circular orbit (whether stable
or—more probably—not) if and only if $2 = mu−3

0 f(1/u0), which we are in
position now to express

u0 = J(u0) (54)

Writing u = u0 + x, we now have

d2x
dθ2

+ x = J ′(u0)x + 1
2J ′′(u0)x2 + 1

6J ′′′(u0)x3 · · · (55)

Leading-order stability—in the present angular sense—requires that

β2 ≡ 1 − J ′(u0)

= 1 − (m/$2)
{
− 2 1

u3 f
(

1
u

)
+ 1

u2
d
duf

(
1
u

)}
u→u0

= 3 −
{

u
f(1/u)

d
duf

(
1
u

)}
u→u0

(56)
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be positive. We then have

x(θ) = a cos(βθ − δ) (57)

which leads to this very weak conclusion: orbital closure of a perturbed circular
orbit requires that β be rational.

That weak conclusion is strengthened, however, by the observation that
all {E, $}-assignments that lead to nearly circular orbits must entail the same
rational number β. Were it otherwise, one would encounter discontinuous
orbital-design adjustments as one ranged over that part of parameter space.
We observe also that (56) can be written34

r
f(r)

d
dr f(r) = d log f

d log r = β2 − 3

which integrates at once to give log f = (β2 − 3) log r + constant:

f(r) = krβ2−3

⇓
J(u) = (km/$2)u1−β2

(58)

To relax the “nearly circular” assumption we must bring into play the
higher-order contributions to (55), and to preserve orbital periodicity/closure
we must have35

x = a1 cos βθ + λ
{
a0 + a2 cos 2βθ + a3 cos 3βθ + · · ·

}
(59)

Here λ is a device introduced to identify the terms we expect to be small in the
neighborhood of the circle of radius 1/u0: once it has done its work it will be
set equal to unity. Introducing (59) into (55)—which now reads

d2x
dθ2

+ β2x = 1
2J ′′(u0)x2 + 1

6J ′′′(u0)x3 + · · ·

—we execute the command Series[expression,{λ, 0, 1}], then set λ = 1,
then command TrigReduce[expression] to turn cos2 and cos3 terms into their
multiple-angle equivalents, and are led by these manipulations to write

β2a0 + 0 − 3β2a2 cos 2βθ − 8β2a3 cos 3βθ + · · ·
=

{
1
4a2

1J
′′ + a2

1

(
1
4a0 + 1

8a2

)
J ′′′ + · · ·

}
+

{
a1

(
a0 + 1

2a2

)
J ′′ + 1

8a2
1

(
a1 + a3

)
J ′′′ + · · ·

}
cos βθ

+
{

1
4a1

(
a1 + 2a3

)
J ′′ + 1

4a2
1

(
a0 + a2

)
J ′′′ + · · ·

}
cos 2βθ

+
{

1
2a1a2J

′′ + a2
1

(
1
24a1 + 1

4a3

)
J ′′′ + · · ·

}
cos 3βθ + · · ·

34 Use u d
du = −r d

dr , which follows directly from u = 1/r.
35 It is without loss of generality that we have dropped the δ-term from (57),

for it can always be absorbed into a redefinition of the point from which we
measure θ.
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and to conclude that

a0 = 1
β2

{
1
4a2

1J
′′ + a2

1

(
1
4a0 + 1

8a2

)
J ′′′ + · · ·

}
0 =

{
a1

(
a0 + 1

2a2

)
J ′′ + 1

8a2
1

(
a1 + a3

)
J ′′′ + · · ·

}
a2 = − 1

3β2

{
1
4a1

(
a1 + 2a3

)
J ′′ + 1

4a2
1

(
a0 + a2

)
J ′′′ + · · ·

}
a3 = − 1

8β2

{
1
2a1a2J

′′ + a2
1

(
1
24a1 + 1

4a3

)
J ′′′ + · · ·

}
From the specialized structure (58) of J(u) that has been forced upon us it
follows that

J ′′(u) = −β2(1 − β2)u−2J(u)

J ′′′(u) = (1 + β2)β2(1 − β2)u−3J(u)

so at u0 = J(u0) we have

J ′′ = −β2(1 − β2)/u0

≡ β2J2/u0

J ′′′ = (1 + β2)β2(1 − β2)/u2
0

≡ β2J3/u2
0

giving
a0
a1

=
{

1
4

a1
u0

J2 + a1
u0

(
1
4

a0
u0

+ 1
8

a2
u0

)
J3 + · · ·

}
0 = a1

{(
a0
u0

+ 1
2

a2
u0

)
J2 + 1

8
a1
u0

(
a1
u0

+ a3
u0

)
J3 + · · ·

}
a2
a1

= − 1
3

{
1
4

(
a1
u0

+ 2 a3
u0

)
J2 + 1

4
a1
u0

(
a0
u0

+ a2
u0

)
J3 + · · ·

}
a3
a1

= − 1
8

{
1
2

a2
u0

J2 + a1
u0

(
1
24

a1
u0

+ 1
4

a3
u0

)
J3 + · · ·

}
which we now rewrite in such a way as to expose implications of our presumption
that the ratios a0/u0 and a1/u0 are small:

a0
a1

=
{

1
4

a1
u0

J2 + a1
u0

(
1
4

a0
u0

+ 1
8

a1
u0

a2
a1

)
J3 + · · ·

}
0 = a1

{(
a1
u0

a0
a1

+ 1
2

a1
u0

a2
a1

)
J2 + 1

8
a1
u0

(
a1
u0

+ a1
u0

a3
a1

)
J3 + · · ·

}
a2
a1

= − 1
3

{
1
4

(
a1
u0

+ 2 a1
u0

a3
a1

)
J2 + 1

4
a1
u0

(
a0
u0

+ a1
u0

a2
a1

)
J3 + · · ·

}
a3
a1

= − 1
8

{
a1
u0

a2
a1

J2 + a1
u0

(
1
24

a1
u0

+ 1
4

a1
u0

a3
a1

)
J3 + · · ·

}
The implication of interest is that a3/a1 is “small-small” (of order (a1/u0)2).
In leading order we therefore have

a0
a1

= 1
4

a1
u0

J2

0 =
{

a1
u0

(
a0
a1

+ 1
2

a2
a1

)
J2 + 1

8
a1
u0

a1
u0

J3 + · · ·
}

a2
a1

= − 1
12

a1
u0

J2

Feeding the first and third of these equations into the second, we obtain

0 = 1
24

(
a1
u0

)2[5J 2
2 + 3J3

]
= 1

24

(
a1
u0

)2[5(1 − β2)2 + 3(1 + β2)(1 − β2)
]

= 1
12

(
a1
u0

)2[
β2 − 5β2 + 4

]



Double separation of the Hamilton-Jacobi equation 47

and are brought thus (with Bertrand) to the conclusion that the β2 in

f(r) = krβ2−3

is constrained to satisfy
(β2 − 4)(β2 − 1) = 0

The attractive central forces that give rise to invariably closed bounded orbits
are two—and only two—in number:

f(r) = −kr+1 : harmonic

f(r) = +kr−2 : keplerian

The preceding argument is in some technical sense “elementary,” and
certainly it is, at several points, quite ingenious . . . if (in my view) not entirely
convincing. It seems to me to be fundamentally misguided to appeal to a
rough-&-ready ad hoc perturbation theory to establish a global result, and
would be surprising if such a strikingly clean and simple result—such a pretty
vista—can be approached only by such a rocky trail. It is my intuitive sense that
an elegant two-line argument—global from start to finish—awaits discovery.
J. V. José & E. J. Saletan, in §2.3.3 of their excellent Classical Dynamics :
A Contemporary Approach (), provide a sketch of an alternative argument
devised by Arnol’d,36 but it does not seem to me to be much of an improvement.

8. Double separation of the Hamilton-Jacobi equation. Bertrand’s theorem
identifies the harmonic and Keplerian central forces as “special” in an orbital
regard that makes good sense classically, but that supports no direct quantum
mechanical interpretation. Those same two “special cases” were found in §7 to
be linked also in another regard: both display “accidental/hidden symmetries”
that lead to unanticipated/non-obvious conservation laws, and those do find a
place in the associated quantum theories. The harmonic and Keplerian central
force systems are, as it happens, “special” in yet a third regard: both are—
uniquely, so far as anyone knows—“multiply separable,” where the term refers

• classically to separation of the Hamilton-Jacobi equation in more than one
coordinate system, and

• in quantum mechanics to separation of the Schrödinger equation.
It is to that third part of the story that we now turn. It is widely assumed
that the three parts are interrelated, symptoms of something deep . . . though
the identity of that “something” lives mainly in vague folklore and not yet in
the world of clearly stated mathematical fact (see again the McIntosh papers24

cited previously).

36 V. I. Arnol’d, Mathematical Methods of Classical Mechanics (2nd edition
). José & Saletan cite also a passage in E. T. Whittaker’s Analytical
Mechanics (4th edition ), but I don’t think they actually read the §108
to which they refer: though entitled “Bertrand’s theorem,” it treats quite a
different mechanical proposition.
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isotropic harmonic oscillator

Separation in Cartesian coordinates: From L = 1
2m(ẋ2 + ẏ2) − 1

2mω2(x2 + y2)
we obtain px = mẋ, py = mẏ whence

H(x, y, px, py) = pxẋ + py ẏ − L(x, y, ẋ, ẏ)

= 1
2m

[
p2

x + p2
y

]
+ 1

2mω2(x2 + y2)

and the time-independent Hamilton-Jacobi equation becomes

1
2m

[
(∂S

∂x )2 + (∂S
∂y )2

]
+ 1

2mω2(x2 + y2) = E

Assume S(x, y) to have the form

S(x, y) = X(x) + Y (y)

and obtain the separated equations

1
2m (dX

dx )2 + 1
2mω2x2 = 1

2E + λ
1

2m (dY
dy )2 + 1

2mω2y2 = 1
2E − λ

}
(60.1)

where λ is a separation constant (as was E ). The initial PDE has been resolved
into an uncoupled pair of ODEs.

Separation in polar coordinates: Write

x = r cos θ

y = r sin θ

Then L = 1
2m(ṙ2 + r2θ̇2) − 1

2mω2r2 gives pr = mṙ, pθ = mr2θ̇ whence

H(r, θ, pr, pθ) = pr ṙ + pθ θ̇ − L(r, θ, ṙ, θ̇)

= 1
2mp2

r + 1
2mr2 p2

θ + 1
2mω2r2

and the H-J equation becomes

1
2m (∂S

∂r )2 + 1
2mr2 (∂S

∂θ )2 + 1
2mω2r2 = E

Assume S(r, θ) to have the form

S(r, θ) = R(r) + T (θ)

and obtain the separated equations

1
2m (dT

dθ )2 − λ = 0
1

2m (dR
dr )2 + 1

2mω2r2 + 1
r2 λ = E

}
(60.2)
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Separation in “alternate polar coordinates”: Fundamentally equivalent to, but
for many applications more attractive than, the familiar polar coordinate system
is the “alternate polar system” defined

x = aes cos θ

y = aes sin θ

}
: a has arbitrary value, dimensions of length

From L = 1
2ma2e2s(ṡ2 + θ̇2)− 1

2mω2a2e2s we obtain ps =ma2e2sṡ, pθ =ma2e2sθ̇
whence

H(s, θ, ps, pθ) = 1
2ma2 e−2s

[
p2

s + p2
θ

]
+ 1

2ma2ω2e2s

and the H-J equation becomes

1
2ma2 e−2s

[
(∂S

∂s )2 + (∂S
∂θ )2

]
+ 1

2ma2ω2e2s = E

Assume S(s, θ) to have the form

S(s, θ) = S(s) + T (θ)

and obtain the separated equations

1
2ma2 (dT

dθ )2 = +λ
1

2ma2 (∂S
∂s )2 + 1

2ma2ω2e4s − Ee2s = −λ

}
(60.3)

2-dimensional kepler problem

Separation in polar coordinates: An direct implication of preceding discussion
is that in the present instance

H(r, θ, pr, pθ) = 1
2mp2

r + 1
2mr2 p2

θ − k
r

so the H-J equation reads

1
2m (∂S

∂r )2 + 1
2mr2 (∂S

∂θ )2 − k
r = E

Assume S(r, θ) to have the form

S(r, θ) = R(r) + T (θ)

and obtain the separated equations

1
2m (dT

dθ )2 − λ = 0
1

2m (dR
dr )2 − k

r + 1
r2 λ = E

}
(61.1)

Separation in alternate polar coordinates: Again, it follows at once from recent
work that

H(s, θ, ps, pθ) = 1
2ma2 e−2s

[
p2

s + p2
θ

]
− k

ae−s
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so we have
1

2ma2 e−2s
[
(∂S

∂s )2 + (∂S
∂θ )2

]
− k

ae−s = E

Assume S(s, θ) to have the form

S(s, θ) = S(s) + T (θ)

and obtain the separated equations

1
2ma2 (dT

dθ )2 = +λ
1

2ma2 (∂S
∂s )2 − k

aes − Ee2s = −λ

}
(61.2)

Separation in confocal parabolic coordinates: In Cartesian coordinates we have

L = 1
2m(ẋ2 + ẏ2) + k√

x2 + y2

The coordinate system of present interest (see Figure 18) arises when one
writes37

x = 1
2 (µ2 − ν2)

y = µν

Straightforward calculation supplies

L = 1
2m(µ2 + ν2)(µ̇2 + ν̇2) + k

µ2 + ν2

whence pµ = m(µ2 + ν2)µ̇ and pν = m(µ2 + ν2)ν̇, from which we obtain

H(µ, ν, pµ, pν) = 1
µ2+ν2

{
1

2m

[
p2

µ + p2
ν

]
− 2k

}
The H-J equation therefore reads

1
2m

[
(∂S

∂µ )2 + (∂S
∂ν )2

]
− 2k = (µ2 + ν2)E

Assuming S(µ, ν) to have the form

S(µ, ν) = M(µ) + N(ν)

we obtain separated equations

1
2m (dM

dµ )2 − µ2E = k + λ

1
2m ( dN

dν )2 − ν2E = k − λ

}
(61.3)

that are notable for their elegant symmetry. It will be noted that when E < 0
these resemble an equation basic to the theory of oscillators.

37 See P. Moon & D. E. Spencer, Field Theory Handbook (), page 21.
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Figure 18: Confocal parabolic coordinate system: x runs →, y
runs ↑, curves of constant ν open to the right, curves of constant
µ open to the left. Confocal parabolic coordinates are particularly
well adapted to discussion of all aspects of the Kepler problem, both
classically and quantum mechanically.
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9. Euler’s “two centers problem”.

10. Kepler problem in action-angle variables.

11. Three-body problem.

12. Perturbation theory.

13. Ballistics.

14. Scattering by a central force.

15. Higher-dimensional analog of the central force problem.


